US009449169B2

a2 United States Patent

Laplace et al.

US 9,449,169 B2
Sep. 20, 2016

(10) Patent No.:
45) Date of Patent:

(54) BLOCK STORAGE VIRTUALIZATION ON
COMMODITY SECURE DIGITAL CARDS

(75) Inventors: Cyprien Laplace, Grenoble (FR);
Harvey Tuch, Cambridge, MA (US);
Kenneth Charles Barr, Newton, MA
(US); Craig Farley Newell, Cambridge,
MA (US); Bi Wu, Durham, NC (US);
Viktor Gyuris, Newton, MA (US)

(73)

")

Assignee: VMware, Inc., Palo Alto, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 416 days.

@
(22)

Appl. No.: 13/430,175

Filed: Mar. 26, 2012

(65) Prior Publication Data

US 2013/0254459 Al Sep. 26, 2013

Int. CL.

GO6F 12/02
GO6F 11/14
GO6F 21/53
GO6F 9/455
GO6F 21/64
GO6F 17/30
U.S. CL

CPC

(51
(2006.01)
(2006.01)
(2013.01)
(2006.01)
(2013.01)
(2006.01)
(52)
........... GO6F 21/53 (2013.01); GOGF 9/45533
(2013.01); GO6F 11/1435 (2013.01); GO6F
17/30218 (2013.01); GOGF 21/64 (2013.01);
GOGF 12/0246 (2013.01); GOGF 17/30185
(2013.01); GO6F 17/30233 (2013.01); GO6F
2212/7207 (2013.01); GOGF 2221/2151
(2013.01)

(58) Field of Classification Search
CPC GO6F 17/30218; GO6F 11/1068;
GOG6F 11/1435; GOG6F 12/0246; GOGF
12/0866; GOGF 17/30233; GOGF 17/30185;

VNIX STORAGE
THREAD
€02

HOST USER SPACE
256

GOG6F 21/53; GOGF 21/64; GOGF 9/45533,
GOG6F 2221/2151; GOG6F 2212/7207
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
2006/0155931 Al* 7/2006 Birrell et al. 711/115
2007/0143286 Al* 6/2007 Kim GOGF 17/3012
2008/0075279 Al* 3/2008 Yoon et al.ccccceeveneene. 380/44
2009/0248887 Al* 10/2009 Craft et al. 709/231
2010/0082547 Al* 4/2010 Mace et al. 707/648
2012/0166709 Al* 6/2012 Chunccovevnee 711/103
2012/0265792 Al* 10/2012 Saltersc.c..... GO1C 21/26
707/822
2013/0013561 Al* 12013 Chanetal. ... 707/636
FOREIGN PATENT DOCUMENTS
WO WO 2011026660 A1 * 3/2011

OTHER PUBLICATIONS

Atsuo Kawaguchi, Shingo Nishioka, Hiroshi Motoda, “A flash-
memory based file system” (1995). Advanced Research Laboratory,
Hitachi, Ltd.*

(Continued)

Primary Examiner — David X Yi
Assistant Examiner — Rocio Del Mar Perez-Velez

(57) ABSTRACT

One embodiment of the present invention provides a system
that facilitates storing an image file of a virtual machine on
a potentially unprotected flash storage exhibiting sub-opti-
mal non-sequential write performance on a mobile phone.
During operation, the system stores in the flash storage data
in a log-structured format and in a protected storage meta-
data associated with the data stored in the flash storage. The
system also checks integrity of the data stored in the flash
storage using the meta-data in the protected storage.

34 Claims, 9 Drawing Sheets

GUEST USER SPACE
266

LBS
E

HOST LiBC
206

GUEST APPLIGATION
20

GUEST LIBC
2

HOST VFS
2%

GUESTVFS
4

NAND FLASH
FILESYSTEM BLOCK LATER
70

MMC/SD LAYER
218

MMC/SD DRIVER
216

PV BLOCK DRIVER
g 250

GUEST KERNEL
263

HOST KERNEL
25

|
POTENTIALLY
UNPROTECTED FLASH
STORAGE WITH SUB-
[OPTIMAL NON-SEQUENTIAL] ESD)
WRITE PEROFORMANCE 20
(S GARD)

210

FTL 212
NAND 214

PHYSICAL VIRTUAL
HARDWARE HARDWARE
52 262

US 9,449,169 B2
Page 2

(56) References Cited
OTHER PUBLICATIONS

Harvey Tuch, Cyprien Laplace, Kenneth C. Barr, Bi Wu “Block
Storage Virtualization with Commodity Secure Digital Cards”
VEE’12 Mar. 3-4, 2012, London, England, UK.*

Rosenblum, Mendel “The Design and Implementation of a Log-
Structured File System” Electrical Engineering and Computer Sci-
ences, Computer Science Division, University of California, Berke-
ley, CA 94720, Jul. 24, 1991, pp. 1-15, US.

* cited by examiner

US 9,449,169 B2

Sheet 1 of 9

Sep. 20, 2016

U.S. Patent

0l
dA\I

L "Old
$01 dIHO-NO-W3LSAS
el “ 9€1 WMJAW | 011 TINY3X LSOH
AN ||
8z}
0€} | e 7 91}
RENCENFRENREN SE I NER 140ddNS
_ 9¢l 140ddnS WA dAW|| ANOHdTT3L
_ aNdA 7Ll
|
ol | - o ;mm_% SddV LSOH
Sddv 1S3n9 ||
| XA >xommw%a<w/w,_ﬂz_ INTNIOYNYI
| 3LOW3Y
801 _ 90}
_ QWOMISIND | T4OM LSOH
nnnnnnnnnnnnnnnnnnnn) -n|-||-|||-||-||-|||||||||-
(SO
OO—‘ 00 00

U.S. Patent

Sep. 20, 2016 Sheet 2 of 9 US 9,449,169 B2
VMX STORAGE HOST USER SPACE i GUEST USER SPACE
THREAD 256 266
202
;ﬁf GUEST APPLICATION
240
1 1
HOST LIBC GUEST LIBC
206 242
L]
1 |
HOST VFS GUEST VFS
236 244
1 1
FAT EXT3 EXT3
234 232 246
| 1
BLOCK LAYER NAND FLASH BLOCK LAYER
FILESYSTEM
228 248
230
1 1
FTL PV BLOCK DRIVER
226 H 250
1
MMC/SD LAYER NAND LAYER
218 224
MMC/SD DRIVER NAND CHIP DRIVER HOST KERNEL GUEST KERNEL
216 222 254 964
[I
[[
POTENTIALLY PROTECTED PHYSICAL VIRTUAL
UNPROTECTED FLASH STORAGE HARDWARE HARDWARE
STORAGE WITH SUB- (NAND CHIP/ 252 262
OPTIMAL NON-SEQUENTIAL ESD)
WRITE PEROFORMANCE 220
(SD CARD)
210
FTL 212
NAND 214

FIG. 2

U.S. Patent Sep. 20, 2016 Sheet 3 of 9 US 9,449,169 B2

[an)
o
(ap]
: [n'd
: L
o —
LLl o w
[LLi >
w — —
= 2 S
(&) —
- (&)
O~ E
95 5
m g
o \
8\—
Lo
= [N\«
A\
(ap]
S (1]
- I O
o < & ! < ™
LLl o "
— N4 LU foteletole! NG O (L)
= < ' % Q @ ~
— O r~ 0 o & > LL.
QO O w — - -
o N LL O S o
YYYYY ' L
N~ oM
s
— N —\
@D -
&S
N~
O w 6
& S
—
— X
oM = S
(@]
—
oM
o)
o |
L o
s | |3 . 8
QO
~— —
S o N o)
oM b
> S
QO
S o 9
= oM
oM

US 9,449,169 B2

Sheet 4 of 9

Sep. 20, 2016

U.S. Patent

v "Old
pry INNSMDTHD VLIVA-YLIN
Zry DIDVIN ¥I1YMve
0y 0Ly AN VIVA-YLIN
NOILISOd E_& ’
Ory AYLN3 mm_mm<m\ 0Sy AMLNI mm_w_m<m\ ¢0y ¥43avaH \
00 VLvYA-YLIN (-N) dAWVISINIL |]
(1-N) WNSYD3IHD MO0
AR
dNYLSINIL
TRNSOAD 00T > NOILYIWHOANI ¥0014
oL 0 dWYLSInIL vy
HLONITNNY
Y14 M2019 043z 0 WNSYO3HO YD018 4
Ny (N) HLONI 7
747 ¢MD079 043z X3ANI X078 TYDISAHd
X3ANI ¥3019 TvaID0 X3JAaNI &d g
/ X3AANI 971

U.S. Patent Sep. 20, 2016 Sheet 5 of 9 US 9,449,169 B2

START

VIRTUAL PHONE IMAGE/CHECKPOINT
UPDATE
502

v

WRITE TO WRITE BUFFER
504

BUFFER FULL OR NO
BARRIER ISSUED?
YES
ENCRYPT DATA IDENTIFY NEXT ACTIVE
512 MEMORY CLUSTER FROM GC
522
IDENTIFY ACTIVE MEMORY CLUSTER

514

WRITE
COMPLETE?
524

NO

WRITE DATA TO NEXT CONTIGUOUS
MEMORY BLOCK OF ACTIVE CLUSTER
516

RETURN

FIG. 5A

U.S. Patent Sep. 20, 2016 Sheet 6 of 9 US 9,449,169 B2

START

RECEIVE WRITE REQUEST TO LBS META-
DATAFILE
552

BARRIER
REQUEST?
554

YES

UPDATE LBN TO PBN MAPPING, RUN- PERFORM BARRIER REQUEST
LENGTH, AND ZERO BLOCK FLAG 572
562 l
CALCULATE CHECKSUM FOR CONTENTS CALCULATE META-DATA CHECKSUM
OF RESPECTIVE MEMORY BLOCK 574

564 l
ASSOCIATE TIMESTAMP WITH RESPECTIVE APPEND ENTRY TO LBS META-DATA FILE

MEMORY BLOCK WITH UPDATED INFORMATION
066 982

RETURN

FIG. 5B

U.S. Patent Sep. 20, 2016 Sheet 7 of 9 US 9,449,169 B2

NUMBER OF FREE
CLUSTERS BELOW
LOW WATERMARK?

NO

CALCULATE SCORE FOR EACH CLUSTER
BASED ON EMPTINESS, LEFT EMPTY,
OUTLIER CORRECTION, AND WRITE
POSITION
604

SELECT CLUSTERS WITH SUFFICIENT
SCORE FOR FREEING
606

FREE SELECTED MEMORY CLUSTERS
608

NUMBER
OF FREE CLUSTERS
ABOVE HIGH
WATERMARK?
610

FIG. 6A

U.S. Patent Sep. 20, 2016

START

VIRTUAL PHONE
IMAGE OPENED OR
META-DATA SIZE LIMIT
REACHED?
652

Sheet 8 of 9 US 9,449,169 B2

EXAMINE META-DATA ENTRY STATE
658

)

IS ENTRY PRESENT IN
SECONDARY FILE?
660

ALL ENTRIES
EXAMINED?

662 NO

MAKE SECONDARY FILE AS PRIMARY FILE

FILE
664

WRITE META-DATA ENTRY TO SECONDARY

668
Y
CREATE NEW SECONDARY FILE FOR

META-DATA
670

FIG. 6B

U.S. Patent

US 9,449,169 B2

Sep. 20, 2016 Sheet 9 of 9
700
O
________ ~—_
SOC 710
POWER
PROgEfSOR MANAGER
713
DISPLAY MEMORY STORAGE
MANAGER CONTROLLER CONTROLLER
714 715 716
RAM MIC/SPEAKER ANTENNA
722 724 726
COMMUNICATION MODEM
DISPLA\7(3I\2/IODULE MODULE a6
734
POTENTIALLY
PROTECTED UNPROTECTED
BAT%ERY STORAGE FLASH STORAGE
742 744
INTEGRITY ENCRYPTION GARBAGE
MODULE MODULE COLLECTOR
752 754 756

FIG. 7

US 9,449,169 B2

1

BLOCK STORAGE VIRTUALIZATION ON
COMMODITY SECURE DIGITAL CARDS

BACKGROUND

Over the past decade the mobile phone has evolved from
a voice-centric device into a mobile personal computer. No
longer just for telephony, the mobile phone has become a
multitasking tool, useful for activities such as emailing and
web browsing. The current trends for mobile phones are
toward the mimicking of desktop functionality. As a result,
mobile devices are becoming enterprise endpoints with rich
applications and core enterprise connectivity. Because an
enterprise may need to specifically provision a mobile
device for accessing restricted data, an employee may either
have to sacrifice a personal device or carry two devices, one
personal and one enterprise, to work.

From an end-user perspective, it is desirable to consoli-
date a personal mobile device with an enterprise device.
Virtualization offers an opportunity to provide a convenient
solution by preserving isolation of environments without
requiring a second physical enterprise device. Co-existing
virtual phones on a personal mobile phone represents a very
attractive alternative to existing solutions involving multiple
physical mobile phones. The rapid pace of hardware
advances in mobile devices over the past several years has
led to a class of mobile phones with resources capable of
supporting multiple virtual phones where the virtualization
overhead is small.

Many mobile platforms are often equipped with flash
storage devices exhibiting sub-optimal non-sequential write
performance (relative to sequential writes on that device),
such as Secure Digital (SD) cards, embedded SD (eSD)
cards, or embedded MultiMediaCard (eMMC). The image
and checkpoint files for a virtual mobile phone may reside
in these storage devices due to their large size. However,
these storage devices are designed as a low-cost storage
solution and are optimized for media files, such as photos,
audio, and video files. As a result, these storage devices do
not perform well with non-sequential write operations,
which are typical of a virtual phone. Furthermore, flash
storage devices such as SD cards typically have the File
Allocation Table (FAT) file system for interoperability pur-
poses. However, the FAT file system allows applications to
write in the storage without restriction, leading to weak
security and reduced robustness, that is, the storage is
unprotected. As a result, malicious host applications running
alongside the virtual mobile phone can arbitrarily access and
modify the virtual phone image and checkpoint files. Unpro-
tected storage is also exposed when a mobile platform is
connected to a computer via a USB cable when in mass
storage mode. In addition, host crashes or battery failures
can cause the virtual phone image and checkpoint files to
become corrupt.

While flash storage devices such as SD/eSD/eMMC bring
many desirable features to mobile virtualization, some
issues remain unsolved regarding performance, security, and
robustness when a virtual mobile phone image and check-
point files are stored in an SD/eSD/eMMC card. In this
disclosure, the term “SD card” is used in a generic sense and
can refer to any flash storage devices which has sub-optimal
non-sequential write performance and which can be poten-
tially unprotected.

SUMMARY

One embodiment of the present invention provides a
system that facilitates storing an image file of a virtual

10

15

20

25

30

35

40

45

50

55

60

65

2

machine in potentially unprotected flash storage exhibiting
sub-optimal non-sequential write performance. During
operation, the system stores data in the flash storage in a
log-structured format. The system further stores in a pro-
tected storage meta-data associated with the data stored in
the flash storage. In addition, the system checks integrity of
the data stored in the flash storage using the meta-data in the
protected storage.

In a variation on this embodiment, the system is a mobile
device.

In a variation on this embodiment, the data stored in the
flash storage contains an image of a virtual machine.

In a variation on this embodiment, the flash storage and
the protected storage are on the same storage device,
wherein the storage device has a secure file system.

In a variation on this embodiment, the flash storage is a
Secure Digital (SD) card.

In a variation on this embodiment, the system stores in a
write buffer write data to be written in the flash storage.

In a variation on this embodiment, the system further
calculates a checksum based on data in a memory block in
the flash storage and stores the checksum in the meta-data
associated with the memory block.

In a further variation on this embodiment, the checksum
is calculated based on unencrypted data.

In a variation on this embodiment, the system also asso-
ciates a timestamp with a write operation on a memory block
in the flash storage and stores the timestamp in the meta-data
associated with the memory block.

In a wvariation on this embodiment, the system also
encrypts a memory block in the flash storage.

In a variation on this embodiment, the system appends
new meta-data to the existing meta-data in a contiguous
fashion.

In a variation on this embodiment, the system stores the
data in the flash storage in one or more clusters, a respective
cluster comprising a predetermined number of memory
blocks.

In a further variation on this embodiment, the system also
removes stale meta-data from the protected storage in
response to the meta-data reaching a predetermined length
or the data in the flash storage corresponding to the meta-
data being opened.

In a further variation on this embodiment, the system frees
a memory cluster in the flash storage, wherein the cluster is
selected based on one or more of the following: 1) the cluster
being marked as unused in its associated meta-data; 2) a
number of available memory blocks in the cluster; 3)
availability of an adjacent, writable memory cluster; 4) a
write operation occurring in a previous memory cluster; and
5) a high number of unavailable memory blocks in the
memory cluster compared with a plurality of nearby
memory clusters.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates an exemplary system architecture for
mobile virtualization platform (MVP), in accordance with
an embodiment of the present invention.

FIG. 2 illustrates an exemplary storage architecture for
MVP, in accordance with an embodiment of the present
invention.

FIG. 3A illustrates exemplary cluster formation of a
logging block structure (LBS) data file format, in accor-
dance with an embodiment of the present invention.

US 9,449,169 B2

3

FIG. 3B illustrates exemplary storage occupancy for the
LBS data file format, in accordance with an embodiment of
the present invention.

FIG. 4 illustrates an exemplary LBS meta-data file format
of MVP, in accordance with an embodiment of the present
invention.

FIG. 5A presents a flowchart illustrating a process of
MVP storing [LBS data associated with a virtual mobile
phone, in accordance with an embodiment of the present
invention.

FIG. 5B presents a flowchart illustrating a process of
MVP storing [.BS meta-data associated with a virtual mobile
phone, in accordance with an embodiment of the present
invention.

FIG. 6A presents a flowchart illustrating a process of
MVP freeing storage for LBS data in a potentially unpro-
tected flash storage device exhibiting sub-optimal non-
sequential write performance, in accordance with an
embodiment of the present invention.

FIG. 6B presents a flowchart illustrating a process of
MVP freeing storage for LBS meta-data in the protected
storage of a phone, in accordance with an embodiment of the
present invention.

FIG. 7 illustrates an exemplary architecture of a system
with LBS support, in accordance with an embodiment of the
present invention.

DETAILED DESCRIPTION

The following description is presented to enable any
person skilled in the art to make and use the invention, and
is provided in the context of a particular application and its
requirements. Various modifications to the disclosed
embodiments will be readily apparent to those skilled in the
art, and the general principles defined herein may be applied
to other embodiments and applications without departing
from the spirit and scope of the present invention. Thus, the
present invention is not limited to the embodiments shown,
but is to be accorded the widest scope consistent with the
claims.

Overview

In embodiments of the present invention, the problem of
ensuring performance, security, and robustness for storing a
virtual mobile phone image and checkpoint files on an SD
card of a mobile phone is solved by storing data in contigu-
ous memory blocks in a log-structured manner in the SD
card and the corresponding meta-data in the protected stor-
age (i.e., a storage with a secure file system, such as ext3) of
the phone. In some embodiments, a protected storage can be
an internal or native NOT AND (NAND) gate based
memory chip with a secure file system. In some further
embodiments, a protected storage can be an eMMC or an
eSD device with a secure file system. Typical input/output
(I/O) operations on a virtual device storage, which is
included in a virtual machine image file, are mixed, and may
require non-sequential access to different memory blocks of
a flash storage device exhibiting sub-optimal non-sequential
write performance. However, because such storage devices
are designed as a low-cost storage solution and are opti-
mized for media files, these storage devices do not perform
well with non-sequential write operations. In some embodi-
ments, the virtual phone image and checkpoint files are
stored in the flash storage device exhibiting sub-optimal
non-sequential write performance in a log-structured man-
ner such that the I/O operations on the image are performed
on contiguous memory blocks. A predetermined number of
adjacent memory blocks are grouped into a cluster, and one

10

20

25

30

35

40

45

50

55

60

65

4

cluster is made available at a time for I/O operations. As a
result, contiguous memory blocks of the cluster become
available for /O operations, resulting in improved memory
throughput.

In some embodiments, meta-data corresponding to the
data in the unprotected storage are stored in a protected
storage of the mobile phone. The data in the unprotected
storage can be encrypted. Furthermore, a checksum can be
computed on unencrypted data from a memory block and
stored in the corresponding meta-data. A timestamp can also
be associated with each write operation performed to a
memory block and stored in the corresponding meta-data.
The checksum and timestamp associated with each memory
block facilitate data verification and protect the data against
security threats as well as media failures.

In this disclosure, the phrase “flash storage device which
exhibits sub-optimal non-sequential write performance” is
used in a generic sense. This phrase and its various equiva-
lent forms such as “flash storage” can refer to any type of
storage device, including, but not limited to, SD cards,
embedded SD (eSD) cards, micro-SD cards, mini-SD cards,
SD high capacity (SDHC) cards, multimedia cards (MMCs),
and embedded MMCs (eMMCs). Note that the aforemen-
tioned flash storage can be potentially unprotected. Further-
more, although examples in this disclosure use SD cards as
the flash storage device, embodiments of the present inven-
tion are not limited to SD cards. Any flash storage device
exhibiting sub-optimal non-sequential write performance,
which may be protected or unprotected, can be used in
various embodiments.

The term “virtual mobile phone” is used in a generic sense
and the term refers to a logical device, or a “virtual
machine,” running on a physical device. The terms “mobile
phone,” “mobile system,” and “mobile device” are used
interchangeably in this disclosure. The terms “virtual” and
“logical” are also used interchangeably in this disclosure.

The term “checkpoint” is used in a generic sense. Any
method for supporting a suspend or a resume operation, and
reducing boot time for a virtual machine can be used to
provide a checkpoint. Furthermore, any method used to
capture a snapshot of the current state of a device, and later
on used for restarting the execution in case of failure, can
also be used to provide a checkpoint. The term “image” is
also used in a generic sense and may refer to a logical
representation of a virtual device, which can be stored as a
data file.

In this disclosure, data associated with a virtual mobile
phone may refer to any stored data, including, but not
limited to, images and checkpoints of the virtual phone.
Meta-data associated with a virtual mobile phone refers to
any data that provides information about one or more
aspects of data associated with the virtual mobile phone.

Although the present disclosure is presented using
examples of mobile phones, embodiments of the present
invention are not limited to mobile devices. Embodiments of
the present invention are applicable to any type of comput-
ing device, including but not limited to, desktop computers,
notebook computers, nethook computers, tablets, portable
multimedia players, etc.

Mobile Virtualization Platform

FIG. 1 illustrates an exemplary system architecture for
mobile virtualization platform (MVP), in accordance with
an embodiment of the present invention. MVP is an end-to-
end solution for enterprise management of employee-owned
phones, encompassing an enterprise virtual mobile phone
for physical mobile devices. A physical mobile phone 100 in
FIG. 1 includes MVP 102. MVP 102 is typically hosted in

US 9,449,169 B2

5

a system-on-chip (SoC) 104. The native operating system on
phone 100 runs host kernel 110 over SoC 104. Host appli-
cations 112 run on host kernel 110. Host applications 112
can include personal applications of the owner of phone 100.
Telephony support 116 allows phone 100 to make regular
telephone calls. Host kernel 110 and all modules running on
host kernel 110 form a “host world” 106. Host world 106
includes the user and system context, such as user files,
privileged register files, and processor states.

In some embodiments, MVP 102 includes remote man-
agement agent 114 that allows the virtual mobile phone to be
remotely managed. Remote management agent 114 can
support provisioning, updating, wiping, locking and backup
of virtual phones over mobile networks. In some embodi-
ments, MVP 102 can run a guest operating system for a
virtual mobile phone alongside the native operating system.
The guest operating system includes a guest kernel 130
which runs guest applications 132. Guest applications 132
include all applications associated with the enterprise, which
provides MVP for the phone. Guest kernel 130 and all
modules running on guest kernel 130 form a “guest world”
108.

MVP user interface proxy 120 runs on the native operat-
ing system (i.e., host kernel 110) and provides the user
interface to access the virtual mobile phone. When the
virtual mobile phone in MVP 102 is loaded, proxy 120
allows the user interface of the guest operating system to
operate. For example, the host operating system of phone
100 can be Symbian while the guest operating system of the
virtual mobile phone can be Android. Under such a scenario,
proxy 120 of MVP 102 runs on Symbian and allows the user
interface of Android to operate when the virtual mobile
phone is loaded in phone 100. MVP virtual machine (VM)
support services 122 provide necessary host services to the
virtual phone.

MVP relies on the ability of certain components to operate
in privileged modes over a native operating system. A
daemon process, MVP daemon (MVPD) 128 executes as a
privileged user on the host and is responsible for granting
necessary capabilities to MVP-related processes. In some
embodiments, MVPD 128 is placed on phone 100 by an
original equipment manufacturer. MVPD 128 performs
integrity checks that enable a verified execution environ-
ment for the virtual phone of MVP 102. In addition, MVPD
128 inserts an authenticated MVP kernel module (MVPKM)
136 into host kernel 110, and facilitates transfer of control
between host kernel 110 and MVP virtual machine monitor
(VMM) 134.

During operation, when the virtual phone is launched,
MVPD 128 loads VMM 134 into memory, and dedicates a
thread to the execution of VMM 134. From the host oper-
ating system’s point of view, this thread for VMM 134
represents the time spent running the virtual phone, and the
processor time is divided between guest world 108 and host
world 106. In host world 106, host kernel 110 and applica-
tions 112 continue to execute as before. When guest world
108 is started, MVPD 128 calls MVPKM 136, which
facilitates the switch between the worlds. The control of
phone 100 is then transferred to VMM 134, which in turn
passes control to guest kernel 130. VMM 134 returns control
to host world 106 on interrupts and when necessary to access
host services, such as host memory allocation or making
system calls on behalf of the virtual phone.

VMM 134 works with components on host world 106,
such as VMX process 124 to provide guest world 108 with
a set of virtual devices, such as storage. MVP 102 introduces
a paravirtualized guest driver for each such virtual device

10

15

20

25

30

35

40

45

50

55

60

65

6

component. VMM 134 intercepts calls from guest drivers
and forwards requests as needed to the components for
device-specific behavior. MVP 102 also facilitates check-
pointing and restoration of the virtual phone, providing an
enhanced user experience via virtual phone persistence, and
hides the virtual phone boot process.

Logging Block Store

Because storing the virtual phone image and checkpoint
files requires a large amount of storage space, MVP may
store them in potentially unprotected flash storage devices
exhibiting sub-optimal non-sequential write performance. In
some embodiments, such storage devices are external stor-
age cards and can be inserted into a physical phone. How-
ever, storing in a potentially unprotected flash storage device
exhibiting sub-optimal non-sequential write performance
(e.g., an SD card) may lead to performance, security, and
reliability issues. Embodiments of the present invention use
a logging block store (LBS) file format to resolve these
issues. The LBS is a type of log-structured system, which
writes all modifications to a storage device sequentially in a
log-like structure, thereby speeding up both write operations
and crash recovery. Along with the log the system also stores
associated metadata, which includes indexing information,
so that files can be read back from the log efficiently. In
addition, the system performs garbage collection to re-use
storage space, which prevents the log file from growing
infinitely. More details about log-structured file systems in
general can be found in Rosenblum, Mendel and Ousterhout,
John K. “The Design and Implementation of a Log-Struc-
tured File System,” ACM Transactions on Computer Sys-
tems, Vol. 10 Issue 1. pp. 26-52, February 1992, which is
incorporated by reference herein.

FIG. 2 illustrates an exemplary storage architecture for
MVP, in accordance with an embodiment of the present
invention. In some embodiments, physical hardware 252 of
a phone with MVP offers two types of storage devices: a
potentially unprotected flash storage device exhibiting sub-
optimal non-sequential write performance, such as an SD
card 210 and protected storage 220. SD card 210 contains a
flash translation layer (FTL) 212 which makes flash memory
of SD card 210 appear to the phone as a linearly accessible
block storage device. The flash memory of SD card 210
includes arrays of NAND gates 214, which are organized by
FTL 212 into a logical block structure. Protected storage 220
is constructed with NAND gates as well.

In some embodiments, host kernel 254 of the host oper-
ating system has a NAND flash file system 230 that is used
to access protected storage 220. In some embodiments, host
kernel 254 has a generic file system, such as ext3, wherein
FTL 226 makes storage 220 appear to the phone as a linearly
accessible block storage device and the secure file system
makes the storage protected. Host virtual file system (VFS)
236 of host kernel 254 allows host libraries to access
different types of file systems in a uniform way. In some
embodiments, the file system for SD card 210 is FAT (234)
and for protected storage 220 is ext3 (232). In some embodi-
ments, protected storage 220 can be an eMMC or an eSD
card with a secured file system, such as ext3 (232). In
addition, host libraries can include a C language library, such
as host libc 206. FTL 226 makes linear flash memory of
NAND layer 224 appear to block layer 228 like a disk drive.
Block layer 228 includes a request queue and allows 1/O
operations on protected storage 220 as memory blocks. A
driver 222 for the NAND chip in protected storage 220
executes the I/O operations on NAND chip based on activi-
ties in NAND layer 224. Similarly, in conjunction with FTL
212, block layer 228 allows 1/O operations on SD card 210

US 9,449,169 B2

7
as memory blocks via MMC/SD layer 218. A driver 216 for
the MMC/SD card executes the I/O operations on SD card
210 based on activities in MMC/SD layer 218.

Guest kernel 264 contains a paravirtualized block storage
driver 250, providing the front-end of the virtual phone.
Driver 250 provides guest kernel 264 a set of virtual
hardware 262 and communicates requests of block layer 248
in kernel 264 with VMX storage thread 202 executing in
host user space 256. VMX thread 202 implements L.BS 204
for the virtual phone. Guest virtual file system (VFS) 244 of
guest kernel 264 allows guest libraries, such as guest libc
242, to access a guest file system in guest user space 266 in
a uniform way. In some embodiments, the guest file system
is an ext3 file system 246.

A read or write operation by a guest application 240
requires data to be transferred between guest application
memory and the physical SD card media. For example,
during a write operation, the corresponding data is trans-
ferred to guest kernel 264. A virtual I/O operation is then
started by a call from a paravirtualized device driver. The
driver provides a reference to a VMM, as described in
conjunction with FIG. 1. The VMM, in turn, provides a
shared mapping to VMX thread 202. The block, as identified
by block layer 228, is then written to the virtual phone image
file using a write operation on host kernel 254 and trans-
ferred to SD card 210.

A simple FTL, typically found on an SD card, is opti-
mized for sequential write patterns and coarse block opera-
tions on the SD card. In embodiments of the present inven-
tion, the LBS is a log structured file format designed to
represent virtual phone images at the fine block granularity.
The log structure bridges the gap between demands associ-
ated with the non-sequential I/O access pattern of a virtual
phone and the SD card’s reduced throughput caused by
non-sequential access patterns. The LBS groups a predeter-
mined number of memory blocks on the SD card into
memory clusters to facilitate efficient garbage collection. An
LBS-based image for a virtual phone includes a data file and
a meta-data file. The data file is located on the SD card due
to its significant size. The meta-data file is located in the
phone’s protected storage, since it is a fraction of the size of
its data counterpart, and hence benefits from security and
robustness of the protected storage.

In some embodiments, the LBS data file is stored in fixed
size clusters, each of which includes a number of fixed sized
blocks. FIG. 3A illustrates exemplary cluster formation of a
logging block structure (LBS) data file format, in accor-
dance with an embodiment of the present invention. In this
example, blocks 0 to 255 are grouped into cluster 0, blocks
256 to 511 are grouped into cluster 1, and so forth. In some
embodiments, the size of a block is 1 kilobyte and a cluster
is 256 kilobytes. Clusters are created for making memory
available for contiguous write operations (particularly after
garbage collection). For instance, assume that cluster 1
becomes available during operation. Consequently, blocks
256 to 511 become available for contiguous write opera-
tions. If a guest application on a virtual phone starts a write
operation, then 256 contiguous blocks of memory are avail-
able for writing. In other words, clusters facilitate garbage
collection and ensure that contiguous sequential blocks exist
to speed up write operations. The block indices in the data
file (e.g., block 0, block 1, and so forth) are referred to as the
physical block number (PBN). The logical block number
(LBN) refers to the index of a block represented via LBS
inside the virtual phone image. A page mapping table is
maintained for LBS in the VMX thread to translate between

10

15

20

25

30

35

40

45

50

55

60

65

8
LBN and PBN. The LBS data file is fully allocated on the
storage device at creation, preventing further fragmentation
once initialized.

FIG. 3B illustrates exemplary storage occupancy for the
LBS data file format, in accordance with an embodiment of
the present invention. An active cluster is the cluster in the
storage where current write operations take place. All write
operations always append to the end of the current active
cluster. In the example in FIG. 3B, during operation, a
cluster 320 becomes active. Consequently, all write opera-
tions of MVP take place in cluster 320 starting from block
321. Assume that blocks 321 to 323 become occupied.
Consequently, the next write operation takes place in block
324. A garbage collector maintains a pool of free clusters to
provide when the active cluster is full. When cluster 320
becomes full, the garbage collector offers cluster 330 as an
active cluster.

For a read operation from a guest application on the
virtual phone, the LBN is first mapped to the current PBN
for the logical block using the page mapping table. Then the
physical block corresponding to the PBN from the storage is
read. For instance, the PBN of block 312 in FIG. 3B
becomes the current PBN during operation and the read
operation reads from block 312. After the read operation, the
data from block 312 is cached by both the guest kernel and
the host kernel. In some embodiments, to avoid this double
caching, the VMX thread uses a flag. By setting the flag, the
VMX thread instructs the host kernel to avoid using its page
cache for this file. In some embodiments, the data file is
over-provisioned with space, e.g. the number of physical
blocks allocated might be larger than the number of logical
blocks. This over-provisioning ensures that even a full
virtual phone image maintains adequate space for freeing
memory clusters.

FIG. 4 illustrates an exemplary LBS meta-data file format
of MVP, in accordance with an embodiment of the present
invention. In this example, a LBS meta-data file 400 resides
in the protected storage and is an append-only log of
meta-data associated with data stored in a potentially unpro-
tected flash storage device exhibiting sub-optimal non-
sequential write performance (e.g., SD card) and the corre-
sponding barrier entries. (Note that a barrier entry is a
special /O operation used in a pipelined system to ensure
the proper ordering of other /O operations placed before
and after the barrier. In other words, 1/O operations placed
before the barrier entry must be completed before the barrier,
and 1/O operations placed after the barrier entry must be
performed after the barrier.) In this example, a header field
402 holds header information of meta-data 400. In response
to a write operation from a guest application, an entry for the
write operation is appended to the meta-data file 400 at write
position 450. A meta-data entry 410 contains a current
logical block index 424 and a physical block index 422 of
the corresponding memory block, reflecting changes to the
LBN-to-PBN mapping. In some embodiments, meta-data
entries are run-length encoded. That is, each entry contains
a corresponding run length. For example, run-length value
414 indicates the corresponding run length for meta-data
entry 410. Zero blocks are optimized in both data and
meta-data files, represented by zero block flag 416. At the
end of meta-data entry 410 is a series of fields providing
block information 412, such as checksums and timestamps
0 to (N-1) for corresponding N non-zero blocks in the
potentially unprotected flash storage device exhibiting sub-
optimal non-sequential write performance, wherein the
blocks correspond to meta-data entry 410. In some embodi-

US 9,449,169 B2

9

ments, meta-data entry 410 has a 32 bit Fletcher checksum
or Secure Hash Algorithm (SHA)-256 checksum for a
respective block.

When the guest kernel of the virtual phone issues a
request for an 1/O barrier, a barrier entry 440 is appended to
meta-data 400. Barrier entry 440 contains a magic entry 442.
Barrier entry 440 also contains meta-data checksum 444 of
the meta-data entries since the last barrier entry. For
example, in FIG. 4, checksum 444 contains a checksum of
all entries between barrier entries 430 and 440. Checksum
444 allows the virtual phone to roll back to the last barrier
if a missing terminating barrier or corruption of the LBS
meta-data is detected. For example, during operation, if an
error is detected through checksum 444, the virtual phone
can roll back to barrier 430.

1/0 Operations of LBS

1/O operations on an LBS data file are performed on the
potentially unprotected flash storage device exhibiting sub-
optimal non-sequential write performance. However, 1/O
operations on the corresponding [L.BS meta-data file are
performed on the protected storage of the phone. FIG. 5A
presents a flowchart illustrating a process of MVP storing
LBS data associated with a virtual mobile phone, in accor-
dance with an embodiment of the present invention. Upon an
update to the image or checkpoint file of the virtual phone
of MVP (operation 502), the VMX storage thread of MVP
(e.g., VMX storage thread 202 illustrated in FIG. 2) writes
the updated information to a write buffer (operation 504).
The update to the image or checkpoint file of the virtual
phone (and the corresponding meta-data file) is triggered
when a guest operating system executes a write operation
(i.e., when the guest operating system writes to its virtual
storage, the VMX storage thread redirects the request to the
image file). The goal of LBS is to increase the number of
sequential writes. The write buffer minimizes write latency
and increases the size of sequential writes. In some embodi-
ments, the size of the write buffer is equal to the size of a
memory cluster.

The VMX storage thread then checks whether the buffer
is full or whether a barrier request was issued by the guest
kernel (operation 510). If so, then the buffer is flushed and
the content of the buffer is transferred to a potentially
unprotected flash storage device exhibiting sub-optimal non-
sequential write performance. The data in the buffer is first
encrypted (operation 512). Then the VMX storage thread
identifies the current active memory cluster (operation 514)
and writes data to the next contiguous memory block of the
active cluster (operation 516). For example, referring to FIG.
2, VMX storage thread 202 implements LBS 204, and keeps
track of active memory clusters and next contiguous
memory block. The VMX storage thread then checks if the
cluster is full (operation 520). If the cluster is not full, then
the VMX storage thread further checks if write operation is
complete (operation 524). If the write operation is not
complete, the VMX storage thread continues to write to the
next contiguous memory block of the active cluster (opera-
tion 516). If the cluster is full, the VMX storage thread
identifies the next active memory cluster from the garbage
collector (operation 522) and proceeds to check whether the
write operation is complete (operation 524). The write
operation on the flash storage continues until all content of
the buffer is transferred (operation 524).

FIG. 5B presents a flowchart illustrating a process of
MVP storing [.BS meta-data associated with a virtual mobile
phone, in accordance with an embodiment of the present
invention. Upon receiving a write request to the LBS meta-
data file (operation 552), MVP checks if the request is a

15

20

35

40

45

55

10

barrier request (operation 554). If not, then the write opera-
tion is associated with a write operation to the flash storage
(i.e., the write operation to the LBS meta-data file is trig-
gered by an update to a memory block of the LBS data file).
MVP then updates the LBN to PBN mapping, run-length,
and zero block flag for the memory blocks to be written on
the potentially unprotected flash storage device exhibiting
sub-optimal non-sequential write performance (operation
562), as described in conjunction with FIG. 4. MVP calcu-
lates a checksum based on the contents of a respective
memory block before encryption (operation 564) and asso-
ciates a timestamp with a respective memory block (opera-
tion 566). If the request is for a barrier entry (operation 554),
then MVP performs the corresponding barrier request (op-
eration 572) and calculates the meta-data checksum of all
entries since the previous barrier entry (operation 574), as
described in conjunction with FIG. 4. When the entry is
ready for writing to the meta-data file (after operation 566 or
574), MVP appends the entry to the L.BS meta-data file with
updated information (operation 582).

Garbage Collection

In some embodiments, garbage collection takes place in a
thread separate from the main storage thread. The garbage
collector thread selects clusters to free based on the “emp-
tiness” of a cluster, i.e. the number of unoccupied blocks in
the cluster. Furthermore, the garbage collector thread selects
clusters to free based on a score assigned to the cluster. It is
desirable to minimize the number of non-sequential jumps in
the write position, even when write buffering and achieving
sequential access within a cluster. A combination of factors
is used for scoring a respective cluster. The garbage collector
frees contiguous clusters that have the highest scores. In
some embodiments, the scoring function has four weighted
components:

Emptiness: A cluster with more free blocks is given a
higher score. The score can be calculated based on the
number of unoccupied blocks divided by blocks-per-
cluster.

Left empty: A cluster with an empty left adjacent cluster
is given a high score because it is desirable to have as
many contiguous free clusters as possible. Since most
1/O operations are ascending, the right adjacent cluster
is likely to be considered during a write operation.

Outlier correction: A clusters with a substantially higher
number of occupied blocks compared to the adjacent
clusters is given a high score. This outlier cluster is
favored by treating the cluster as if it were almost as
empty as its adjacent clusters.

Write position: A cluster next to the cluster currently
being written is given a high score. This promotes
contiguous writes.

FIG. 6A presents a flowchart illustrating a process of
MVP freeing storage for LBS data in a potentially unpro-
tected flash storage device exhibiting sub-optimal non-
sequential write performance, in accordance with an
embodiment of the present invention. In some embodiments,
MVP dedicates a thread for garbage collection. Garbage
collection starts when the number of free clusters drops
below a low watermark and stops when the number of free
clusters climbs back up above a high watermark. Hence,
MVP first checks whether the number of free clusters is
below the low watermark (operation 602). If not, MVP
continues to check; otherwise, the garbage collection pro-
cess begins. MVP first calculates a score for each cluster
based on emptiness, left empty, outlier correction, and write
position (operation 604). MVP then selects clusters with a
sufficient score for freeing (operation 606). In some embodi-

US 9,449,169 B2

11

ments, MVP selects a cluster for garbage collection when the
score for the cluster is more than a threshold value. MVP
then frees the selected memory clusters (operation 608). For
example, in FIG. 3B, garbage collection process can free
cluster 330 to provide contiguous memory cluster to active
cluster 320. Next, MVP determines whether the number of
free clusters has climbed back up above a high watermark
(operation 610). If so, MVP continues to check whether the
number of free clusters is below the low watermark (opera-
tion 602). If not, MVP continues the garbage collection
process (operation 604).

FIG. 6B presents a flowchart illustrating a process of
MVP freeing storage for LBS meta-data in the protected
storage of a phone, in accordance with an embodiment of the
present invention. The meta-data file is not garbage collected
online. Instead, when a virtual phone image associated with
MVP is opened or when the size of the L. BS meta-data file
reaches a fixed limit (operation 652), an atomic update is
performed offline to eliminate stale entries. At any point in
time, there exist up to two meta-data files in use by MVP, a
primary and a secondary. MVP only writes to the secondary
file. When a virtual phone image is opened, an empty
secondary metadata file is created (if it does not already exist
on the file system). Both primary and secondary meta-data
files are read into an in-memory representation of meta-data
state. Subsequently, MVP performs garbage collection of the
meta-data. MVP then examines an entry in the in-memory
representation of the meta-data (operation 658) and deter-
mines whether it is present in the secondary meta-data
(operation 660). If not, the entry is appended to the second-
ary file (operation 664). Otherwise, the entry is skipped.
MVP then checks whether all entries in the in-memory
meta-data have been examined (operation 662). If all entries
have not been examined, MVP continues to examine entries
in the in-memory meta-data (operation 658). When all
entries have been examined, MVP makes the secondary file
into the primary LBS meta-data file (operation 668). In some
embodiments, the secondary meta-data file is renamed into
the primary meta-data file. A new secondary meta-data file
is then created, where all future meta-data file updates will
occur (operation 670). Note that MVP also performs the
above garbage collection when the meta-data file reaches a
predetermined size.

Reliability

There are several possible failure scenarios for a virtual
phone. For example, when the host of the virtual phone
crashes due to battery depletion, software bugs or other
causes, the data or meta-data file may face corruption, or the
write buffer contents can be lost. Furthermore, when a
NAND device (a potentially unprotected flash storage
device exhibiting sub-optimal non-sequential write perfor-
mance), such as an SD card, or protected storage, such as a
storage with a secure file system) fails, the files can become
corrupt.

Because MVP is hosted on a host operating system, MVP
relies on the guarantees provided by the underlying file
systems of the host operating system for protection against
meta-data corruption. The robustness of the protected stor-
age provides protection to the LBS meta-data file. However,
an L.BS data file on a potentially unprotected flash storage
device exhibiting sub-optimal non-sequential write perfor-
mance can be prone to crash. A corruption to the data file is
detectable through the use of checksums on both the LBS
data, and the checksum stored in the corresponding meta-
data entry. Barrier entries in the meta-data contain a check-
sum of the meta-data entries since the last barrier entry. In
this way, if a missing terminating barrier or corruption of the

20

40

45

55

12

LBS meta-data is detected, it is possible to roll back to the
last barrier during recovery. Furthermore, L.BS ensures that
internal write buffers are flushed and that synchronization is
performed on first the L.BS data file and then the meta-data
file on a barrier operation from the guest kernel to manage
any loss to the content of the write buffer.

When a garbage collection is performed on the meta-data
file, there is a possibility of failure due to a host crash. To
reduce the likelihood of this failure, MVP writes to a second
meta-data file and only when the garbage collection is
complete is the second file assigned as the current meta-data
file.

There are existent error detection mechanisms within the
FTLs for both the protected storage and the potentially
unprotected flash storage device exhibiting sub-optimal non-
sequential write performance. However, a malicious attacker
may modify memory blocks in the unprotected flash storage
and produce symptoms similar to media failure from the
point-of-view of the LBS of MVP. But the FTL on the SD
card regards the modification as a legitimate write operation
and cannot detect the symptoms. The checksums provide an
additional mechanism to detect actual media failure and
guard against such malicious attacks.

Security

There are two classes of attacks that can be considered as
the most relevant to a virtual phone. The first class of attack
is physical attacks, where the confidentiality of any data
associated with a virtual phone is compromised when the
physical phone or an external unprotected storage (e.g., an
SD card) is lost or stolen. The other class of attack is done
by malicious applications. These malicious applications
compromise the confidentiality or integrity of the virtual
phone image by exploiting weaknesses in the host OS, either
while the virtual phone is running or when it is suspended.

As the LBS data file is encrypted at block granularity, if
an SD card or phone is stolen, there is no plaintext on the
storage media available to an attacker. Furthermore, this
encryption ensures that the malicious applications may not
learn the contents of the LBS data file. However, encryption
alone does not directly protect against replay and random-
ization attacks. A replay attack occurs when a legitimate
encrypted block from the past is reintroduced in the LBS
data file by a malicious application, causing the virtual
phone behavior to be influenced by the contents of the
injected block. The attacker does not need to know the
plaintext contents of the block. Only the associated guest
behavior with the block that has been previously observed is
sufficient for the malicious application to launch the replay
attack. A randomization attack occurs when a block is
intentionally corrupted by a malicious application. This
corruption leads guest applications or the guest kernel to
behave outside the usual control envelope where they
depend on the contents of the block.

The timestamp and checksum in the LBS meta-data
associated with a respective memory block combat replay
and randomization attacks, respectively. In some embodi-
ments, MVP maintains a logical clock for timestamps, and
the timestamp for a respective memory block is incremented
after each write. As an older block is associated with an older
timestamp, an older block cannot be reintroduced and a
reply attack is thus prevented. A checksum is calculated on
the content of a memory block before encryption. The
resultant checksum is hidden from the attacker as the
checksum resides in the L. BS meta-data, which is protected
by the permissions of the native operating system. Hence,
when attempting a randomization attack, the attacker is
limited by a lack of knowledge of the checksum of a

US 9,449,169 B2

13

memory block. In some embodiments, the checksum selec-
tion is configurable and can be based on a Fletcher-32 or
truncated SHA-256 checksum.

System Architecture

FIG. 7 illustrates an exemplary architecture of a system
with LBS support, in accordance with an embodiment of the
present invention. System 700 includes a SoC 710 that
provides the basic functionality to the system. In some
embodiments, system 700 is a mobile phone. SoC 710
includes a processor 711 that executes the operations of
system 700. Power manager 713 controls battery 738. Dis-
play manager 714 controls display module 732 and provides
display to a user. In some embodiment, display module
includes a liquid crystal display (LCD). Memory controller
715 allows processor 711 to access random access memory
(RAM) 722. Storage controller 716 provides accesses to
protected and potentially unprotected flash storage device
exhibiting sub-optimal non-sequential write performance of
system 700.

Microphone/speaker module 724 allows a user to perform
regular voice operations. Communication module 724 uses
antenna 726 and modem 736 to connect to a telephone
network. System 700 includes a protected storage 742 and a
potentially unprotected flash storage device 744 exhibiting
sub-optimal non-sequential write performance. In some
embodiments, protected storage 742 can be a NAND flash
memory chip. In some further embodiments, protected stor-
age 742 can be an eMMC or an eSD card with a secured file
system, such as ext3. Integrity module 752 performs integ-
rity checks on NAND flash 742 and potentially unprotected
flash storage 744. Encryption module 754 encrypts memory
blocks on NAND flash 742 and potentially unprotected flash
storage 744. Garbage collector 756 frees memory blocks and
makes them available for writes.

Note that the above-mentioned modules can be imple-
mented in hardware as well as in software. In some embodi-
ments, one or more of these modules can be embodied in
computer-executable instructions stored in a memory which
is coupled to one or more processors in system 700. When
executed, these instructions cause the processor(s) to per-
form the aforementioned functions.

In summary, embodiments of the present invention pro-
vide a system and a method for storing data in contiguous
memory blocks in a potentially unprotected flash storage
device exhibiting sub-optimal non-sequential write perfor-
mance of a mobile phone and corresponding meta-data in a
protected storage of the phone to ensure performance, reli-
ability, and security. In one embodiment, during operation,
the system stores in the flash storage data in a log-structured
format and in a protected storage meta-data associated with
the data stored in the flash storage. The system also checks
integrity of the data stored in the flash storage using the
meta-data in the protected storage.

The methods and processes described herein can be
embodied as code and/or data, which can be stored in a
computer-readable non-transitory storage medium. When a
computer system reads and executes the code and/or data
stored on the computer-readable non-transitory storage
medium, the computer system performs the methods and
processes embodied as data structures and code and stored
within the medium.

The methods and processes described herein can be
executed by and/or included in hardware modules or appa-
ratus. These modules or apparatus may include, but are not
limited to, an application-specific integrated circuit (ASIC)
chip, a field-programmable gate array (FPGA), a dedicated
or shared processor that executes a particular software

20

25

40

45

55

60

65

14

module or a piece of code at a particular time, and/or other
programmable-logic devices now known or later developed.
When the hardware modules or apparatus are activated, they
perform the methods and processes included within them.

The foregoing descriptions of embodiments of the present
invention have been presented only for purposes of illustra-
tion and description. They are not intended to be exhaustive
or to limit this disclosure. Accordingly, many modifications
and variations will be apparent to practitioners skilled in the
art. The scope of the present invention is defined by the
appended claims.

What is claimed is:

1. A computer executable method comprising:

storing, by a first driver implemented in a computer, data

in a log-structured format in a first file system, wherein
the first file system comprises a plurality of memory
clusters, each memory cluster comprising a plurality of
contiguous memory blocks, and

wherein the storing comprises:

writing sequentially to each of the contignous memory

blocks in a first memory cluster;
determining that the first memory cluster is full; and
responsive to the determining, selecting a second memory
cluster and writing sequentially to each of the contigu-
ous memory blocks in the second memory cluster;

storing in a second file system, by a second driver
implemented in the computer, meta-data associated
with the data stored in the first file system, wherein the
meta-data comprises a plurality of entries, including a
first meta-data entry and a second meta-data entry, the
first meta-data entry corresponding to the first memory
cluster containing data stored in the log-structured
format by the first driver and the second meta-data
entry corresponding to the second memory cluster
containing data stored in the log-structured format by
the first driver; and

checking integrity of the data stored in the first file system

using the meta-data in the second file system, wherein
the first and second file systems are different file
systems.

2. The method of claim 1, wherein the computer is a
mobile device.

3. The method of claim 1, wherein file systems of the first
file system and the second file system are of different types,
and the file system of the second file system is a secure file
system.

4. The method of claim 1, wherein the data stored in the
first file system contains an image of a virtual machine.

5. The method of claim 1, wherein the first file system is
implemented in a Secure Digital (SD) card and the second
file system is implemented in a different file system device.

6. The method of claim 1, further comprising storing in a
write buffer write data to be written in the first file system.

7. The method of claim 1, further comprising:

calculating a checksum based on data in a memory block

in the first file system; and

storing the checksum in the meta-data associated with the

memory block,

wherein the checksum of the memory block is used in

checking the integrity of the data stored in the memory
block of the first file system.

8. The method of claim 7, wherein the checksum is
calculated based on unencrypted data.

9. The method of claim 1, further comprising:

associating a timestamp with a write operation on a

memory block in the first file system; and

US 9,449,169 B2

15

storing the timestamp in the meta-data associated with the

memory block,

wherein the timestamp associated with the write operation

on the memory block is used in checking the integrity
of the data stored in the memory block of the first file
system.

10. The method of claim 1, further comprising encrypting
a memory block in the first file system.

11. The method of claim 1, further comprising appending
new meta-data to the existing meta-data in a contiguous
fashion.

12. The method of claim 1, further comprising storing the
data in the first file system in one or more clusters, a
respective cluster comprising a predetermined number of
memory blocks, wherein garbage collection in the first file
system is performed in units of a cluster.

13. The method of claim 12, further comprising removing
stale meta-data from the second file system in response to
the meta-data reaching a predetermined length or the data in
the first file system corresponding to the meta-data being
opened.

14. The method of claim 12, further comprising freeing a
memory cluster in the first file system, wherein the memory
cluster is selected based on one or more of the following:

the memory cluster being marked as unused in its asso-

ciated meta-data;

a number of available memory blocks in the memory

cluster;

availability of an adjacent writable memory cluster;

a write operation on a previous memory cluster; and

a high number of unavailable memory blocks in the

memory cluster compared with a plurality of nearby
memory clusters.

15. A computer-readable non-transitory storage device
storing instructions that when executed by a computer cause
the computer to perform a method, the method comprising:

storing data in a log-structured format in memory blocks

of a first file system using a first driver;

storing in a second file system meta-data associated with

the data stored in the first file system using a second
driver, wherein the meta-data comprises a plurality of
entries, including a first meta-data entry and a second
meta-data entry, the first meta-data entry corresponding
to a first set of memory blocks that are contiguous in the
first file system and contain data stored in the log-
structured format using the first driver, and the second
meta-data entry corresponding to a second set of
memory blocks that are contiguous in the first file
system and contain data stored in the log-structured
format using the first driver; and

checking integrity of the data stored in the first file system

using the meta-data in the second file system, wherein
the first and second file systems are different file
systems.

16. The storage device of claim 15, wherein the computer
is a mobile device.

17. The storage device of claim 15, wherein file systems
of the first file system and the second file system are of
different types, and the file system of the second file system
is a secure file system.

18. The storage device of claim 15, wherein the data
stored in the first file system contains an image of a virtual
machine.

19. The storage device of claim 15, wherein the first file
system is implemented in a Secure Digital (SD) card and the
second file system is implemented in a different file system
device.

5

15

20

25

30

35

40

45

50

55

60

65

16

20. The storage device of claim 15, wherein the method
further comprises storing in a write buffer write data to be
written in the first file system.

21. The storage device of claim 15, wherein the method
further comprises:

calculating a checksum based on data in a memory block
in the first file system; and storing the checksum in the
meta-data associated with the memory block,

wherein the checksum of the memory block is used in
checking the integrity of the data stored in the memory
block of the first file system.

22. The storage device of claim 21, wherein the checksum

is calculated based on unencrypted data.

23. The storage device of claim 15, wherein the method
further comprises:

associating a timestamp with a write operation on a
memory block in the first file system; and

storing the timestamp in the meta-data associated with the
memory block,

wherein the timestamp associated with the write operation
on the memory block is used in checking the integrity
of the data stored in the memory block of the first file
system.

24. The storage device of claim 15, wherein the method
further comprises encrypting a memory block in the first file
system.

25. The storage device of claim 15, wherein the method
further comprises appending new meta-data to the existing
meta-data in a contiguous fashion.

26. The storage device of claim 15, wherein the method
further comprises storing the data in the first file system in
one or more clusters, a respective cluster comprising a
predetermined number of memory blocks, wherein garbage
collection in the first file system is performed in units of a
cluster.

27. The storage device of claim 26, wherein the method
further comprises removing stale meta-data from the second
file system in response to the meta-data reaching a prede-
termined length or the data in the first file system corre-
sponding to the meta-data is opened.

28. The storage device of claim 26, wherein the method
further comprises freeing a memory cluster in the first file
system, wherein the memory cluster is selected based on one
or more of the following:

the memory cluster being marked as unused in its asso-
ciated meta-data;

a number of available memory blocks in the memory
cluster;

availability of an adjacent writable memory cluster;

a write operation on a previous memory cluster; and

a high number of unavailable memory blocks in the
memory cluster compared with a plurality of nearby
memory clusters.

29. A computer system comprising:

a first file system storing data in a log-structured format
using a first driver;

a second file system storing meta-data associated with the
data stored in the first file system using a second driver,
wherein the meta-data comprises a plurality of entries,
including a first meta-data entry and a second meta-data
entry, the first meta-data entry corresponding to a first
set of memory blocks that are contiguous in the first file
system and contain data stored in the log-structured
format using the first driver, and the second meta-data
entry corresponding to a second set of memory blocks

US 9,449,169 B2

17

that are contiguous in the first file system and contain
data stored in the log-structured format using the first
driver; and

an integrity checking mechanism configured to check

integrity of the data stored in the first file system using
the meta-data in the second file system, wherein the
first and second file systems are different file systems.

30. The computer system of claim 29, wherein computer
system is a mobile device.

31. The computer system of claim 29, wherein the data
stored in the first file system contains an image of a virtual
machine.

32. The computer system of claim 29, wherein the first file
system is implemented in a Secure Digital (SD) card and the
second file system is implemented in a different file system
device.

33. The computer system of claim 29, wherein file sys-
tems of the first file system and the second file system are of
different types, and the file system of the second file system
is a secure file system.

34. The computer system of claim 29, wherein the data are
stored in the first file system in the log-structured format in
one or more clusters, a respective cluster comprising a
predetermined number of memory blocks, and garbage
collection in the first file system is performed in units of a
cluster.

10

15

20

25

18

